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Abstract

Information comes in diverse modalities. Multimodal native AI models are
essential to integrate real-world information and deliver comprehensive
understanding. While proprietary multimodal native models exist, their
lack of openness imposes obstacles for adoptions, let alone adaptations. To
fill this gap, we introduce ARIA, an open multimodal native model with
best-in-class performance across a wide range of multimodal, language,
and coding tasks. ARIA is a mixture-of-expert model with 3.9B and 3.5B
activated parameters per visual token and text token, respectively. It out-
performs Pixtral-12B and Llama3.2-11B, and is competitive against the best
proprietary models on various multimodal tasks. We pre-train ARIA from
scratch following a 4-stage pipeline, which progressively equips the model
with strong capabilities in language understanding, multimodal under-
standing, long context window, and instruction following. We open-source
the model weights along with a codebase that facilitates easy adoptions
and adaptations of ARIA in real-world applications.

Code: https://github.com/rhymes-ai/Aria
Website: https://rhymes.ai/

1 Introduction

In this report, we present ARIA, the first open mixture-of-experts (MoE) model that is
multimodal native. The term multimodal native has been used in prior literature to refer
to different model capabilities, without a clear consensus. Here, we provide a quantifiable
definition: A multimodal native model refers to a single model with strong understanding capabilities
across multiple input modalities (e.g. text, code, image, video), that matches or exceeds the modality-
specialized models of similar capacities. Our definition aligns with the user experience of
proprietary multimodal models such as GPT-4o or Gemini-1.5, where a user does not need
to differentiate inputs from different modalities. Instead, the model is expected to seamlessly
handle and integrate multiple modalities’ input with a single model.

While proprietary multimodal native models are not uncommon, their training recipes
remain largely undisclosed. As a result, most open-source models are modal-specialized or
show subpar performance across modalities. In this research, we fill the gap and introduce
training recipes for developing multimodal native models from scratch, which includes key
aspects below:

• Model Architecture. The core of our model is a fine-grained mixture-of-experts
decoder, which enables faster training and inference speed over dense decoders,
due to more efficient parameter utilization through expert specialization. ARIA MoE
activates 3.5B parameters per text token and has a total of 24.9B parameters. Visual
input of variable length, size, and aspect is encoded as visual tokens using a

� corresponding author: junnanli@rhymes.ai
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Knowledge/Math
(Multimodal)

MMMU (val) 54.9 52.5 50.7 56.4 59.4 69.1 56.1 62.2
MathVista (testmini) 66.1 58.0 51.5 - 54.7 63.8 58.4 63.9

Document/Chart/
Scene Text
Understanding

DocVQA (test) 92.6 90.7 88.4 88.4 - 92.8 89.9 93.1
ChartQA (test) 86.4 81.8 83.4 78.4 - 85.7 85.4 87.2
TextVQA (val) 81.1 - - 78.0 - - 78.7 78.7

General Visual QA MMBench-1.1 80.3 - - 79.8 76.0 82.2 - 73.9

Long Video
Understanding

EgoSchema (test) 66.8 - - - - 72.2 65.7 72.2
LongVideoBench (test) 65.3 47.4 45.7 60.7 58.8 66.7 62.4 64.4
VideoMME (w subs) 72.1 47.5 50.2 63.3 68.9 77.2 75.0 81.3

Knowledge/Math/
Reasoning
(Language)

MMLU (5-shot) 73.3 69.2 69.4 86.4 - 89.1 78.9 85.9
MATH (CoT) 50.8 48.1 51.9 - 70.2 76.6 - -
ARC Challenge 91.0 - 83.4 - 96.4 96.7 - -

Coding HumanEval 73.2 72.0 72.6 67.0 87.2 90.2 74.3 84.1

Table 1: Performance comparison across various multimodal and language benchmarks.
Results of competing models are collected from verified official sources or reruned with
official settings.

lightweight visual encoder of 438M parameters. ARIA has a long multimodal
context window of 64k tokens.

• Data. ARIA is pre-trained on 6.4T language tokens and 400B multimodal tokens.
We develop a rigorous procedure to curate high-quality data from a diverse set of
sources. The multimodal pre-train data includes four major categories: interleaved
image-text sequence from common crawl, synthetic image captions, documents
transcriptions and question-answering pairs, synthetic video captions and question-
answering pairs.

• Training Pipeline. We design a 4-stage training pipeline, including language
pre-training, multimodal pre-training, multimodal long-context pre-training, and
multimodal post-training. Each stage is designed to progressively enhance certain
model capabilities while maintaining those acquired in early stages. Our pipeline
efficiently and effectively exploits the data and compute resources to maximize
model performance.

Following this recipe, ARIA demonstrates state-of-the-art performance as an open multi-
modal native model. Compared to Pixtral-12B [Mixtral, 2024] and Llama3.2-11B [Dubey
et al., 2024], Aria demonstrates superior performance across a wide range of multimodal,
language, and coding tasks, while enjoying lower inference cost due to the fewer number of
activated parameters. In addition, ARIA also performs on par with proprietary models such
as GPT-4o and Gemini-1.5 on various multimodal tasks. The detailed benchmark results are
present in Table 1.

We release ARIA under the Apache 2.0 license, free for both academic and commercial use.
To facilitate easier adoption, we open-source a training framework that enables finetuning
ARIA on a wide variety of data sources and formats, using as few as one GPU.

2 Model

2.1 Fine-Grained Mixture-of-Experts

MoE has emerged as a preferred architecture over dense models for building compute-
efficient large language models [Fedus et al., 2022, Jiang et al., 2024, Dai et al., 2024,
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Ludziejewski et al., 2024]. The core idea of MoE is to replace each feed-forward layer
(FFN) in a Transformer with a set of experts, where each expert is structurally identical to
an FFN. Each input token is routed to only a subset of experts in each layer. The sparsity of
expert activation ensures computational efficiency of an MoE layer.

Due to the vast diversity of multimodal data, we hypothesize that expert specialization is
important for an multimodal MoE to understand input from different data distributions. To
this end, we use a large number of fine-grained experts with smaller FFN hidden dimension
than standard FFNs, similar to [Dai et al., 2024]. In particular, ARIA has 66 experts in each
MoE layer, 2 of the 66 experts are shared among all inputs to capture common knowledge,
whereas 6 more experts are activated for each token by a router module. Table 2 shows the
detailed architectural configuration.

ARIA is significantly different from previous multimodal MoEs which either design
modality-specific expert architectures or rely on upcycling from dense models [Lin et al.,
2024b, Shen et al., 2023, Lin et al., 2024a]. Our multimodal native MoE is pre-trained from
scratch with modality-generic experts. In Section 4.2, we show that multimodal expert
specialization naturally arises after pre-training.

#total parameters #activated parameters #experts #activated experts expert FFN dim hidden dim #layers
24.9B 3.5B 2△+64 2△+6 1664 2560 28

Table 2: Architectural configuration of our MoE decoder. △ denotes shared experts.

2.2 Visual Encoder

We design a lightweight visual encoder to convert visual inputs (i.e. images or video frames)
into continuous visual tokens with the same feature dimension as word embeddings, which
enables the MoE to seamlessly integrate visual and language inputs.

Drawing inspiration from previous work [Li et al., 2023, Bai et al., 2023, Laurençon et al.,
2024], our visual encoder consists of a Vision Transformer (ViT) and a projection module. The
ViT accepts images in their native aspect ratio as variable-length sequences of patches [Lee
et al., 2023, Dehghani et al., 2023], which preserves the inherent information structure in
images. We categorize image size into three ranges: (1) medium-resolution images, where
the longer edge is resized to 490 pixels; (2) high-resolution images, where the longer edge
is resized to 980 pixels; (3) ultra-high-resolution images, where an image is dynamically
decomposed into multiple high-res images, following a strategy similar to Liu et al. [2024].
We initialize the weights of our ViT using the SigLIP-SO400M model [Zhai et al., 2023] and
continue pre-train the ViT on our multimodal data.

Our projection module transforms the sequence of image embeddings from the ViT into a
sequence of visual tokens. It comprises a single cross-attention layer and a FFN layer. The
cross-attention layer employs a set of trainable vectors as queries and the image embeddings
as keys. Medium-resolution images are processed by 128 queries, whereas high-resolution
images are processed by an additional 128 queries (256 queries in total). The outputs from
the cross-attention layer are then fed to an FFN, which then outputs visual tokens for the
MoE decoder to further process.

2.3 Infrastructure

ARIA is trained on an extensively modified Megatron framework [Shoeybi et al., 2019]. We
eschew pipeline parallelism and instead implement a combination of expert parallelism
[Lepikhin et al., 2020] and ZeRO-1 data parallelism [Rajbhandari et al., 2020] to optimize
performance. Due to the carefully designed parallelism method and the small model size,
ARIA can be effectively trained without using tensor parallelism, which significantly reduces
communication overhead and enhances training efficiency.

We implement a load balancing loss to prevent routing collapse and encourage balanced
expert activation. We find that the expert-level load balancing loss in previous work [Fedus
et al., 2022, Dai et al., 2024] is overly restrictive for our MoE due to the large number of
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experts. Therefore, we relax the load balancing to groups of experts, where each group
contains 8 fine-grained experts. We also employ z-loss [Zoph et al., 2022] to stabilize training.

3 Training

In this section, we delineate our 4-stage training pipeline. In each stage, the model aims to
learn new capabilities while maintaining those acquired previously. We perform evaluation
during each stage to ensure that such goal is achieved in a data-efficient and compute-
efficient way.

3.1 Language Pre-training

The first stage pre-trains the MoE decoder with a large amount of curated language data
converted into discrete text tokens, using a next-token prediction loss, which enables the
MoE to learn general knowledge about the world. The context window length is 8K tokens.

Language Data. Our language pre-training data contains 6.4T tokens in total, curated from
a variety of data sources containing knowledge until May 2024. We de-duplicate the data at
different granularities and perform rigorous quality filtering, using a combination of rule-
based approach and model-based quality classifiers. To enhance model’s in-context learning
capability, we employ data clustering and pack similar data in the same sequence during
training, akin to the approach in Shi et al. [2023]. However, their original method is less
scalable and likely to generate numerous long-tail structures when processing trillions of
tokens. Instead, we utilize a minimum spanning tree algorithm for language data clustering,
which resulted in a noticeable performance gain.

3.2 Multimodal Pre-training

The second stage pre-trains the MoE decoder and the visual encoder with a mixture of
language and multimodal data, using the same next-token prediction loss. This stage aims
to enable the model with broad multimodal understanding abilities, while maintaining
or even improving its language understanding. To this end, the language data contains a
high-quality subset of 1T tokens, covering topics including code, reasoning, and knowledge.
The multimodal data contains 400B tokens from a diverse set of sources, which can be
categorized into four major categories below.

Interleaved image-text web data. We extract and filter web pages from Common Crawl.
The filtering process first removes web pages with low image or text quality. Then, it de-
duplicate images, and removes web pages where the images and the text have low overall
CLIP score [Radford et al., 2021]. Additionally, we adjust the position of the images in the
sequence, by moving an image to the front of a sentence if the sentence has higher CLIP
score and is in front of the image. In total, we curate 190B interleaved image-text tokens.

Synthetic image captions. Alt texts directly extracted for web images are generally short,
less descriptive, and noisy. It has been shown in previous work that synthetic data at scale
can improve multimodal pre-training [Li et al., 2022]. We thus synthesize image captions
using a small model which has learned to generate longer and more descriptive image
captions by re-writing the alt texts. We create synthetic captions for 300M images in the
LAION-400M dataset Schuhmann et al. [2021], resulting in a total of 70B multimodal tokens.

Document transcriptions and QA. To improve the model’s capability of understanding
text-heavy images, we transcribe document images into texts using public OCR methods.
We also render images using plain text, chart json or table/equation latex code. In order to
enhance the model’s ability to not only transcribe text but also understand its meaning, we
use a language model to create synthetic question-answering pairs. In total, our multimodal
document data contains 102B tokens.

Video captions and QA. We collect 4.4M videos of varying lengths from a diverse range of
sources. We train a model to generate frame-level dense descriptions for the videos. Then,
we use a language model to generate question-answering pairs and video summarizations
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Model #Params LongVideoBench VideoMME MMLongBench-Doc
activated (total) test val w subs w/o subs acc f1

Open-source
ARIA 3.9B (25.3B) 65.3 63.0 72.1 67.6 28.3 24.6
Qwen2-VL-7B 7B 56.8 55.6 69.0 63.3 21.3 22.7
Idefics2 8B 49.4 49.7 - - 7.0 6.8
MiniCPM-V-2.6 8B 55.7 54.9 63.7 60.9 11.5 11.6
Llama3.2-11B 11B 45.7 45.5 49.5 46.0 13.8 11.3
Pixtral-12B 12B 47.4 44.9 47.5 40.7 6.4 6.0
InternVL-Chat-V1.5 26B 51.7 51.2 52.4 50.7 14.6 13.0
InternVL2-40B 40B 60.6 59.3 62.4 61.2 18.2 17.9
LLaVA-OneVision-72B 72B 63.2 61.3 69.6 66.3 - -
Qwen2-VL-72B 72B 61.7 60.4 77.8 71.2 33.3 35.7

Proprietary
Gemini-1.5-Flash - 62.6 61.4 75.0 60.3 27.0 21.3
Gemini-1.5-Pro - 64.4 64.0 81.3 75.0 28.2 20.6
GPT-4o mini - 58.8 56.5 68.9 64.8 29.0 28.6
GPT-4o - 66.7 66.7 77.2 71.9 42.9 44.9

Table 3: Evaluation of long-context multimodal understanding on videos and documents.
Results of competing models are collected from verified official leaderboards or reruned
with official settings.

based on the dense video descriptions. In total, our video data contains 35B tokens. We
select samples within 8K length for multimodal pre-training.

3.3 Multimodal Long-Context Pre-training

In this stage, we pre-train on long sequences to extend the model’s context window to 64K
tokens. Language long-sequence data is selected from the pre-train data source. Multimodal
long-sequence data contains long videos, long documents and synthetic long sequences
constructed from short multimodal data. In particular, we concatenate a sequence of
independent images as input, and concatenate their image descriptions as target. This stage
consumes 12B language tokens and 21B multimodal tokens, where 69% of the 33B tokens
are long sequences. We increase the RoPE base frequency hyperparameter from 100K to 5M.

After this stage, the model perfectly solves the needle-in-a-haystack task [Kamradt, 2023]
for up to 64K context window. It also demonstrates substantial performance improvement
on long video understanding and long multimodal document understanding tasks.

3.4 Multimodal Post-training

The final post-training stage anneals the learning rate to converge the model. The learning
focuses on improving the model’s question-answering and instruction-following capabili-
ties, using a mixture of high-quality open-source datasets and human-annotated datasets,
covering domains including multimodal, code, math, and reasoning. This stage digests 20B
tokens in total.

4 Evaluation and Analysis

4.1 Benchmark Results

In Table 1, we compare ARIA against leading open models of similar scale and proprietary
models across a variety of established benchmarks. In Table 3 and Table 4, we examine the
long-context multimodal understanding and instruction following capability, respectively.
Based on the evaluation result, we highlight the following key observations.

ARIA is the best-in-class open multimodal native model, showing clear advantages over
Pixtral-12B and Llama3.2-11B across a wide range of multimodal, language, and coding
tasks.

ARIA is competitive against proprietary models on various multimodal tasks, including
document understanding, chart reading, scene text recognition, and video understanding.
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MIA-Bench (Multimodal) 8.76 7.60 8.07 5.14 8.43 7.54 7.56 7.63 7.06 7.70 7.94 8.86
MT-Bench (Language) 8.53 6.27 6.41 - 7.68 - - - - - - -

Table 4: Evaluation of instruction following capabilities. Results of competing models are
copied from Qian et al. [2024] for MIA-Bench and Mixtral [2024] for MT-Bench.

ARIA excels in long-context multimodal understanding. Real-world multimodal data is
complex by nature and often involves long sequences of interleaved vision-language input,
such as videos with subtitles or multi-page documents. ARIA excels in understanding such
data, significantly outperforming open models such as Qwen2-VL-7B [Bai et al., 2023] and
LLaVA-OneVision-72B [Li et al., 2024]. Compared to proprietary models, ARIA outperforms
GPT-4o mini in long video understanding [Wu et al., 2024], and is superior to Gemini-1.5-
Flash in long document understanding, making ARIA a preferable choice for processing
long multimodal data in a compute-efficient and time-efficient manner.

ARIA has strong instruction following capabilities, outperforming other open models on
both multimodal and language-only benchmarks. See Section 4.3 for qualitative examples.

4.2 Expert Modality Specialization

We analyze the expert activation behavior across all layers in ARIA MoE after the multimodal
pre-training stage. We use multimodal data from three domains for analysis: natural image,
video, and PDF-format image. For each expert, we first compute its activation rate for both
visual tokens and text tokens, denoted as Rv and Rt. Rv refers to the number of visual
tokens that activates the expert divided by the total number of visual tokens processed
by all experts of that layer, and Rt refers to the same meaning for text tokens. Then we
compute the ratio Rv/Rt, which represents the expert’s level of visual specialization. A
higher visual specialization suggests that the expert is more frequently activated by visual
tokens compared to text tokens.

Figure 1 shows a visualization of the expert visual specialization value (capped at 50). It
is observed that a number of visual-specialized experts exist in most layers. Furthermore,
multiple layers (layer 4, 5, 14, 15, 16, 17, 20) have a single visual expert specialized in all
three visual domains. This analysis shows that despite its modality-generic architecture,
our MoE learns effective expert utilization during pre-training.
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Figure 1: Visualization of expert specialization in each MoE layer.
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4.3 Qualitative Analysis

4.3.1 Multimodal Native Reasoning with Vision, Language, Coding Capabilities

ARIA Example - Weather Forecast Information Extraction

User Organize the highest temperature, lowest temperature, and humidity for all
even dates into a table.
Write a python code to draw a line chart for the temperatures, and a bar chart
for the humidity. Use red and green colors for the temperatures, and use blue
color for the humidity.

ARIA Table of values for even dates:

import matplotlib.pyplot as plt

# Data for even dates
days = [’20 Sep’, ’22 Sep’, ’24 Sep’, ’26 Sep’, ’28 Sep’, ’30 Sep’]
high_temps = [33, 33, 32, 29, 27, 27]
low_temps = [26, 26, 26, 24, 26, 26]
humidity = [62, 63, 70, 76, 69, 66]

# Line chart for temperatures
plt.figure(figsize=(14, 6))

plt.subplot(1, 2, 1)
plt.plot(days, high_temps, ’r-’, label=’Highest Temperature’, marker=’o’)
plt.plot(days, low_temps, ’g-’, label=’Lowest Temperature’, marker=’o’)
plt.xlabel(’Days’)

plt.ylabel(’Temperature (◦C)’)

plt.title(’Temperature Variation’)
plt.legend()
plt.grid(True)
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ARIA Example - Weather Forecast Information Extraction

ARIA (continued)
# Bar chart for humidity
plt.subplot(1, 2, 2)
plt.bar(days, humidity, color=’blue’, alpha=0.7)
plt.xlabel(’Days’)
plt.ylabel(’Humidity (%)’)
plt.title(’Humidity’)
plt.ylim(0, 100)
plt.grid(axis=’y’)

plt.tight_layout()
plt.show()

Result Figures generated by the code provided by ARIA is shown as below.

Weather forecast image source (14-day forecast, screenshot on Sep 20, 2024):
https://www.timeanddate.com/weather/singapore/singapore/hourly
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ARIA Example - Financial Report Analysis

User How does the company’s profit margin change from year 2020 to 2021? What
factors cause such changes? Answer step by step.

ARIA To determine how the company’s profit margin changed from 2020 to 2021, we
need to follow these steps:

1. Calculate the profit margins for both years:
• 2020:

– Net income: $57,411 million
– Total net sales: $274,515 million
– Profit margin:

Profit Margin =

(
Net Income

Total Net Sales

)
×100 =

(
$57, 411

$274, 515

)
×100 ≈ 20.91%

• 2021:
– Net income: $94,680 million
– Total net sales: $365,817 million
– Profit margin:

Profit Margin =

(
Net Income

Total Net Sales

)
×100 =

(
$94, 680

$365, 817

)
×100 ≈ 25.88%

10



ARIA Example - Financial Report Analysis

ARIA (continued)
2. Analyze the factors causing the change:

• Increase in Net Income: The net income increased from $57,411 million
in 2020 to $94,680 million in 2021, showing a significant rise of $37,269
million.

• Sales Growth: Total net sales also increased from $274,515 million in
2020 to $365,817 million in 2021, indicating a strong growth in revenue.

• Cost Management: The cost of sales increased from $151,286 million
in 2020 to $192,266 million in 2021, but the percentage increase in sales
outpaced the increase in costs, leading to a higher profit margin.

• Operating Expenses: Operating expenses grew from $38,668 million in
2020 to $43,887 million in 2021, but the rise in sales was more substantial,
positively impacting the profit margin.

Therefore, the company’s profit margin improved from approximately 20.91%
in 2020 to approximately 25.88% in 2021. This improvement is primarily due to
a substantial increase in net income and effective cost management relative to
the growth in total net sales.

Financial report image source:
https://www.financestrategists.com/wealth-management/
financial-statements/
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ARIA Example - Handwritten Math Equation Explanation

User Explain the equation according to the notes, then give an example with num-
bers.

ARIA The equation in the image represents Bayes’ Theorem, which is used to update
the probability estimate of a hypothesis (in this case, having a food allergy)
given new evidence (claiming to have a food allergy).

Explanation:
• P (C|A): Probability that someone who definitely has an allergy would

claim that they do.
• P (A): General probability that someone has a food allergy.
• P (C): Probability that someone would claim to have a food allergy.
• P (A|C): Probability that someone actually has a food allergy given

that they claim to have one.
The equation:

P (A|C) =
P (C|A) · P (A)

P (C)

Example with numbers:
Assume:

• P (C|A) = 0.9, (90% of people with an allergy claim they do)
• P (A) = 0.05, (5% of the population has an allergy)
• P (C) = 0.1, (10% of the population claims to have an allergy)

Using the formula:

P (A|C) =
0.9× 0.05

0.1
= 0.45

So, the probability that someone who claims to have a food allergy actually
does is 45%.

Image source:
https://ngathanblog.wordpress.com/2020/06/25/baysian-struggle/.
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ARIA Example - Code Debugging from Screenshot

User Debug this code.

ARIA The code has a logical error in the nested loop logic. The current implemen-
tation of the has_close_elements function does not correctly check if any
two numbers in the list are closer to each other than the given threshold.
Here’s the issue:

1. The current condition if abs(numbers[i] - numbers[j]) <
threshold: checks the absolute difference between each pair of
numbers but should only check pairs where i and j are different
indices.

2. The inner loop should start from i + 1 instead of i to avoid compar-
ing a number with itself.

Here’s the corrected version:
def has_close_elements(numbers, threshold):

"""
Check if in given list of numbers, are any two numbers closer to
each other than the given threshold.
"""
for i in range(len(numbers)):

for j in range(i + 1, len(numbers)): # Start from i + 1 to avoid comparing with
itself

if abs(numbers[i] - numbers[j]) < threshold:
return True

return False

# Tests
assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True
assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False
assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True

This change ensures the function correctly checks all pairs of numbers and
returns True if any pair is closer than the threshold, otherwise False.

13



ARIA Example - Multi-image Food Chain Identification

User Based on the five species in the images, draw a food chain. Explain the role of
each species in the food chain.

ARIA
1. Mushrooms (Image 1): Decomposers, breaking down dead organic

matter and recycling nutrients.
2. Grass (Image 4): Primary producers, converting sunlight into energy

via photosynthesis.
3. Grasshopper (Image 2): Primary consumers, herbivores feeding on

plants.
4. Mouse (Image 3): Secondary consumers, herbivores that eat plants and

possibly small insects.
5. Hawk (Image 5): Tertiary consumers, predators that eat mice and other

small animals.

Food Chain

Grass → Grasshopper → Mouse → Hawk → Mushrooms
Explanation

1. Grass serves as the base, providing energy to grasshoppers.
2. Grasshoppers eat the grass and are then consumed by mice.
3. Mice are preyed upon by hawks.
4. Hawks are apex predators, feeding on mice.
5. Mushrooms decompose dead matter, recycling nutrients back into the

ecosystem.

14



4.3.2 Long Multimodal Context Window

ARIA Example - Paper Reading

User Summarize the key contribution of the paper, and explain how it uses various
figures and tables to showcase such contribution.

ARIA The paper introduces LONGVIDEOBENCH, a benchmark for evaluating Large
Multimodal Models (LMMs) in long-context video-language understanding.
It addresses the challenge of processing longer video inputs by proposing a
question-answering benchmark that tests the models’ ability to understand
and reason about video contexts interleaved with up to an hour-long
video. This benchmark includes 3,763 videos with diverse themes and 6,678
human-annotated multiple-choice questions across 17 categories.

The key contribution is the comprehensive evaluation of LMMs’ per-
formance on long-form video understanding, highlighting the limitations of
existing models in handling extended inputs. The paper demonstrates that
while proprietary models like GPT-4 and Gemini-1.5-Pro show improvements
with longer inputs, open-source models lag significantly behind.
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ARIA Example - Paper Reading

ARIA (continued) Figures and tables are used to illustrate these points:
• Figure 1: Demonstrates the performance of different models on the

benchmark, showing how accuracy varies with the number of frames.
• Figure 2: Provides examples of the 17 categories of referring reasoning

questions.
• Table 1: Lists the benchmark and previous benchmarks for compari-

son.
• Table 2: Details the 17 categories of referring reasoning questions.
• Table 3: Shows statistics of videos in LONGVIDEOBENCH by cate-

gory groups and duration.
• Table 5: Validation set results categorized by duration groups.
• Table 7: Test set leaderboard of LMMs by duration groups and question

categories.
These visual aids help in understanding the performance metrics, the diversity
of the dataset, and the specific challenges posed by longer videos and complex
questions, thus emphasizing the need for improved models in long-form video
understanding.

User According to the paper, what are the two major difficulties in understanding
long videos?

ARIA The two major difficulties in understanding long videos, as outlined in the
paper, are:

1. Retrieving details from long videos: Existing Large Multimodal
Models (LMMs) often struggle to extract specific details from long
sequences. To accurately assess tasks in LONGVIDEOBENCH, there is
a need for models to focus on granular details such as objects, events,
or attributes, rather than providing a summary or topic overview.

2. Reasoning contextual relations in long videos: Questions in
LONGVIDEOBENCH require models to analyze the interconnections
among diverse contents. This involves understanding the relationships
among objects, events, or attributes within the video, which is signif-
icantly challenging for extensive inputs. The tasks demand models
to derive the correct answer by examining the context and relations
across multiple moments in the video.

LongVideoBench paper source: https://arxiv.org/pdf/2407.15754v1.pdf.
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ARIA Example - Long Video Understanding (Scene Splitting)

User Please split this video into scenes, providing start time, end time, a title and
detailed descriptions for each scene.

ARIA Certainly! Here are the scenes from the video, along with their start and end
times, and detailed descriptions:

1. Scene 1: Introduction
Start Time: 00:01
End Time: 00:05
Title: Introduction
Description: The video opens with a title screen featuring the smarthis-

tory logo and the text "Michelangelo, David, 1501-04," indicating a
conversation with Dr. Steven Zucker and Dr. Beth Harris.
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ARIA Example - Long Video Understanding (Scene Splitting)

ARIA (continued)

2. Scene 2: Accademia Gallery, Florence
Start Time: 00:05
End Time: 00:40
Title: Accademia Gallery, Florence
Description: The scene transitions to the interior of the Accademia

Gallery in Florence, showcasing Michelangelo’s David statue sur-
rounded by visitors. The focus is on the statue and its historical
context.

3. Scene 3: Historical Context
Start Time: 00:40
End Time: 01:08
Title: Historical Context
Description: The scene shifts to a timeline highlighting significant

artworks and events from 1498 to 1512, including Michelangelo’s
David and the Sistine Chapel ceiling.

4. Scene 4: Comparison of Statues
Start Time: 01:08
End Time: 01:50
Title: Comparison of Statues
Description: The video presents a comparison between Michelan-

gelo’s David and Nanni di Banco’s Isaiah for the Cathedral, em-
phasizing their historical significance.

5. Scene 5: Republic of Florence
Start Time: 01:50
End Time: 02:08
Title: Republic of Florence
Description: The scene highlights the Republic of Florence timeline,

focusing on the Medici family and Savonarola, with a focus on
their impact on the city.

6. Scene 6: Savonarola’s Execution
Start Time: 02:08
End Time: 02:22
Title: Savonarola’s Execution
Description: The scene depicts the execution of Savonarola and two

friars in Piazza della Signoria, emphasizing the historical context.
7. Scene 7: Republic Defeats Medici and Savonarola

Start Time: 02:22
End Time: 02:36
Title: Republic Defeats Medici and Savonarola
Description: The scene shows the Republic of Florence defeating the

Medici and Savonarola, with a focus on the historical figures
involved.
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ARIA Example, Long Video Understanding (Scene Splitting)

ARIA (continued)

8. Scene 8: David’s Significance
Start Time: 02:36
End Time: 03:29
Title: David’s Significance
Description: The scene focuses on Michelangelo’s David, highlighting

its special significance for the people of Florence.
9. Scene 9: David in Context

Start Time: 03:29
End Time: 03:42
Title: David in Context
Description: The scene provides a broader context of Florence, show-

ing the cityscape and comparing different David statues.
10. Scene 10: Donatello’s David

Start Time: 03:42
End Time: 03:57
Title: Donatello’s David
Description: The scene highlights Donatello’s David, emphasizing its

historical and artistic significance.
11. Scene 11: Michelangelo’s David

Start Time: 03:57
End Time: 05:49
Title: Michelangelo’s David
Description: The scene returns to Michelangelo’s David, focusing on

its artistic details and historical context.
12. Scene 12: David’s Relocation

Start Time: 05:49
End Time: 06:28
Title: David’s Relocation
Description: The scene discusses the relocation of David to its current

position outside the Palazzo della Signoria.
13. Scene 13: Historical Figures

Start Time: 06:28
End Time: 06:42
Title: Historical Figures
Description: The scene highlights historical figures like Piero de’

Medici and Savonarola, emphasizing their impact on Florence.
14. Scene 14: Michelangelo’s David

Start Time: 06:42
End Time: 06:59
Title: Michelangelo’s David
Description: The scene focuses on Michelangelo’s David as a symbol

of the newly reconstituted Republic of Florence.
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ARIA Example - Long Video Understanding (Scene Splitting)

ARIA (continued)

15. Scene 15: Accademia Gallery
Start Time: 06:59
End Time: 07:03
Title: Accademia Gallery
Description: The scene returns to the Accademia Gallery, showcasing

the statue of David and its historical significance.
16. Scene 16: Cathedral of Florence

Start Time: 07:03
End Time: 07:10
Title: Cathedral of Florence
Description: The scene shifts to the Cathedral of Florence, highlight-

ing its architectural significance.
17. Scene 17: David’s Significance

Start Time: 07:10
End Time: 07:20
Title: David’s Significance
Description: The scene emphasizes the significance of Michelangelo’s

David in the context of Renaissance Florence.
18. Scene 18: Conclusion

Start Time: 07:20
End Time: 07:24
Title: Conclusion
Description: The video concludes with the smarthistory logo, summa-

rizing the key points discussed.
19. Scene 19: Credits

Start Time: 07:24
End Time: 07:27
Title: Credits
Description: The scene provides credits for the video, including con-

tributors and sources.

The video has a total of 19 scenes, each with specific start and end times, titles,
and detailed descriptions.

Video source: https://youtube.com/watch?v=QdlP8ai8trw.

20

https://youtube.com/watch?v=QdlP8ai8trw


ARIA Example - Code Understanding from Videos

User On the page with text ‘Predict 10 Labels‘ on it, a Python class is defined. Please
note down the code that defines this class. After that, explain each part of the
code.

ARIA The Python class defined on the page with text Predict 10 Labels is as follows:
class HiMom(nn.Module):

def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(

nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),

)
def forward(self, x):

x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
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ARIA Example - Code Understanding from Videos

ARIA (continued) Explanation of the code:

1. Class Definition: The class HiMom is defined, inheriting from
nn.Module.

2. Initialization (__init__):
• super().__init__(): Calls the initializer of the parent class.
• self.flatten = nn.Flatten(): Creates a flatten layer to con-

vert input tensors to 1D tensors.
• self.linear_relu_stack = nn.Sequential(...): Defines a

sequence of layers:
– nn.Linear(28*28, 512): A fully connected layer with 28*28

input features and 512 output features.
– nn.ReLU(): ReLU activation function.
– nn.Linear(512, 512): Another fully connected layer with

512 input and output features.
– nn.ReLU(): ReLU activation function.
– nn.Linear(512, 10): Output layer with 10 output features.

3. Forward Method:
• x = self.flatten(x): Flattens the input tensor.
• logits = self.linear_relu_stack(x): Passes the flattened

tensor through the defined sequence of layers.
• return logits: Returns the output logits.

Video source: https://www.youtube.com/watch?v=ORMx45xqWkA.
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